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Abstract—High speed stereo vision can allow unmanned 
robotic systems to navigate safely in unstructured terrain, 
but the computational cost can exceed the capacity of 
typical embedded CPUs. 1 2  In this paper, we describe an 
end-do-end stereo computation co-processing system 
optimized for fast throughput that has been implemented on 
a single Virtex 4 LX160 FPGA.  This system is capable of 
operating on images from a 1024x768 3CCD (true RGB) 
camera pair at 15Hz.  Data enters the FPGA directly from 
the cameras via Camera Link and is rectified, pre-filtered 
and converted into a disparity image all within the FPGA, 
incurring no CPU load.  Once complete, a rectified image 
and the final disparity image are read out over the PCI bus, 
for a bandwidth cost of 68MB/sec. Within the FPGA there 
are 4 distinct algorithms: Camera Link capture, Bilinear 
rectification, Bilateral subtraction pre-filtering and the Sum 
of Absolute Difference (SAD) disparity.  Each module will 
be described in brief along with the data flow and control 
logic for the system. The system has been successfully 
fielded upon the Carnegie Mellon University’s National 
Robotics Engineering Center (NREC) Crusher system 
during extensive field trials in 2007 and 2008 and is being 
implemented for other surface mobility systems at JPL.  
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1. INTRODUCTION 

Image processing is becoming an important part of 
autonomous robotic behaviors for both terrestrial and space 
based rovers.  A variety of sensors and applications are used 
in order for the robot to navigate and interact with its 
surroundings. One such example is a Stereo ranging camera 
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system.  In this system, a set of images are taken from a 
stereo pair of cameras and range information is computed 
from the captured images.  Real time stereo ranging enables 
activities such as autonomous navigation and hazard 
avoidance.  Currently, real time stereo ranging on large 
resolution images on the order of 1024 pixels square 
requires desktop class computers, but in many applications, 
power, size, and speed of available space qualified and/or 
embedded processors are a limiting factor. Flight qualifiable 
processor speeds in the gigahertz range are unavailable; 
instead, only processors in the low hundreds of megahertz 
are space qualified, making real-time stereo processing 
impossible for any reasonable image size.  Given those 
restrictions, the use of Field Programmable Gate Arrays 
(FPGA) has become an increasingly attractive technique for 
embedded processing.  Integrating a sequential processor to 
do sequential tasks, and FPGA fabric to do vector and/or 
parallel processing enables the low power and high 
computation ability required for robotic applications. 

In this paper, we will discuss an implementation of a stereo 
ranging computation system. This system contains all the 
components needed for stereo computation. Most of those 
components, including image capture, are placed in the 
FPGA, while the final floating point range computation is 
placed in the host processor. 

2. THE JPL STEREO VISION SYSTEM  

Binocular stereo vision is a computationally expensive 
algorithm due to the large number of matrix operations. The 
current steps involved in the JPL stereo algorithm are: [1] 

(1) Digitize the stereo image pair. 

(2) Rectify the images 

(3) Filter image using a bilateral subtraction filter to 
normalize the image pair and highlight features. 

(4) Correlate, or measure image similarity by computing 
the Sum of Absolute Differences (SAD) for 7x7 
windows over a fixed disparity search range. 

(5) Estimate disparity by finding the SAD minimum 
independently for each pixel. 
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(6) Filter out bad matches by using the left-right-line-of-
sight (LRLOS) consistency check. 

(7) Estimate sub-pixel disparity by fitting parabolas to the 
three SAD values surrounding the SAD minimum and 
taking the disparity estimate to be the minimum of the 
parabola. 

(8) Filter out small regions (likely bad matches) by 
applying a blob filter that uses a threshold on the 
disparity gradient as the connectivity criterion. 

(9) Triangulate to produce the X-Y-Z coordinates at each 
pixel and transform to the vehicle co-ordinate frame. 

 
Rectification determines a transformation of each image 
plane such that pairs of conjugate epipolar lines become 
collinear and parallel to one of the image axes.  
Rectification reduces the correlation search space to a 
simple 1-D line based search. [1] 

The image is filtered in order to remove the DC offset of 
each image.  Filtering maximizes the correlation scores, 
producing better matches.  If necessary, the image is then 
downsampled to the working size. 

Correlation is the area based search for matching features 
between the two stereo pairs.  One of the images in the 
stereo pair is defined as the reference image.  For each pixel 
in the reference image, the other image is searched along the 
same scan line to find a match to the reference image. As a 
rule of thumb, the search space is chosen to be 10% of the 
image width and is called the disparity search space. The 
difference in pixel location of the best match between the 
stereo pairs is called the disparity for the reference image 
pixel. [1] 

Current pixel
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Right Image
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Current pixel

For a left‐as‐reference image, each pixel in the left image is compared against N disparity
pixels in the right hand image.  The search space starts at the same column as the left 
pixel column, and moves left.   For a right‐as‐reference search, the search space in the left
image also starts in the same column, but moves right.

 

Figure 1: Disparity search space illustrated 

The LRLOS consistency check is a procedure that ensures 
that disparities obtained by choosing best matches along the 
left camera lines of sight agree with those obtained by 
choosing matches along the right camera lines of sight.  If, 

for a given pixel, the left and right lines of sight do not give 
the same disparity, then the match is suspect, and is 
discarded. [1] 

In this system, steps 1 through 7 are placed in the FPGA, 
while steps 8 and 9 are placed in the host processor.  Steps 1 
through 7 are very suited for FPGA implementation, as they 
are invariant and very data parallel.  Step 8 currently yields 
little parallelization advantage, and step 9 uses floating point 
arithmetic, and may not be suitable to an FPGA. 

3. SYSTEM OVERVIEW  

The JPL stereo vision system currently uses an Alpha Data 
ADM-XRC4 development board, which contains a Virtex 4 
V4LX160 running at 66 MHz, 6 independent banks of 4MB 
Zero Bus Turnaround (ZBT) SSRAM, a PCI bus interface 
and a Camera Link interface.  The key to the system layout 
is to maximize throughput by making each module fully 
pipelined, with each module feeding the next as much as 
possible. An overall dataflow and block diagram is 
illustrated in Figure 2 and is discussed below. 
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Figure 2: FPGA block diagram and data flow 

 

There are two phases in the system, each 33ms long: The 
first is a pair of image capture modules which feed a pair of 
image rectification modules. The second is from rectified 
imagery through a pair of bilateral subtraction filters, which 
feeds a stereo correlator, which then produces disparity data. 

The first phase is armed from a PCI bus register write, and 
triggers once the Camera Link module detects a new frame.  
The Camera Link cameras run at a 30Hz frame rate, and 
take just under 33ms (around 32 ms) to report the entire 
image. 

Once triggered the raw imagery enters the system from the 
two Camera Link cameras and feeds one pixel at a time 
directly into each rectification module. The cameras feed 24 
bit RGB data to the stereo FPGA system, while the FPGA 
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modules generate a grayscale image to produce a 32 bit 
RGB plus grayscale pixel (RGBK). 

The rectification module is a “linear in, random out” system, 
meaning that it accepts raw imagery in linearly from the top 
left of the image to the bottom right, but produces a rectified 
output pixel of random location depending on the 
rectification lookup table entry for that input pixel.  This 
feature means that imagery can be acquired directly from 
Camera Link into the rectification module; however, the 
rectification module cannot feed the Bilateral Filter directly 
without buffering as the pixels would be unpredictably out 
of sequence. Therefore, the rectified image is written to an 
intermediary SRAM bank to save the warped imagery.   

Once rectification is complete and the entire warped image 
is available in SRAM, an interrupt is issued over the PCI 
bus to signal the start of the next phase. 

The host processor will require the use of the left rectified 
image color image for other machine vision tasks. In this 
system, the right rectified image is not used outside of 
Stereo. For efficiency, the left rectified image is read from 
SRAM bank 1 and simultaneously fed across the PCI bus to 
the host processor while feeding the first bilateral filter.  The 
right rectified image is fed from Bank 2 in sync with Bank 1 
into the second dedicated bilateral filter, and the combined 
left/right filtered imagery arrive together downstream at the 
stereo disparity module.  This sequence is fully pipelined so 
that the first disparity pixels will arrive when about 17 
rectified lines have been read into the filter.  This phase 
ends when the disparity module outputs the final disparity 
pixel, and then the Camera Link module is re-armed for the 
next frame.  This phase takes 28 ms, with 5 ms of dead time 
until the Camera Link module re-triggers.  While the full 32 
bit pixel from the rectified image is read by the host 
processor, only the grayscale component is fed to the second 
phase of the stereo system. 

The PCI bus reads the disparity image for the host processor 
while the new Capture to warped imagery phase occurs.  
The ZBT banks are independent, with the disparity imagery 
in Bank 0 and the Rectification using Banks 1/2/3/4.  This 
improves throughput.  The entire disparity image will be 
read out in 11ms, 21ms before the last of the warped 
imagery is written to SRAM.   

 

 

4. RECTIFICATION ACCELERATION 

Rectification for stereo vision is the process of removing the 
distortion that a camera lens and imager system can apply to 
the world, and to correct any camera aiming errors so that 
pairs of conjugate epipolar lines become collinear and 
parallel to one of the image axes. [1] Regardless of the 
quality of the lens and imager, there will be some distortion 

in the lens that can be eliminated by resampling the original 
image to one that would be generated by an ideal pinhole 
camera. Additionally, before performing stereo, the images 
need to be corrected so that the two images are aligned. No 
matter how well mounted the two cameras are they will be 
pointed ever so slightly in different directions. This can be 
corrected so that a feature in the left image is in exactly the 
same row as that same feature in the right image. This 
reduces the correlation search to a simple 1-D line based 
search. 

Calibration images of targets with known geometries are 
used to generate a model of the camera’s intrinsic and 
extrinsic properties.  That model is then used to create a 
large lookup table called a rectification table that describes 
the mapping from input image, to a final rectified image. 
The creation of this rectification table is only done once per 
camera set up.  

The rectification table describes the projection of a pixel in 
the rectified image to a precise location in the raw image.  
The neighboring 2x2 pixels to the projected pixel are 
weighted according to the distance of the 2x2 pixels to the 
projected floating point coordinate, and the weighted pixels 
are averaged together to produce the rectified pixel output.  

A 2x2 window in the raw image can influence zero, one or 
multiple output pixels.  Each 2x2 input block of raw 
imagery has a rectification table entry which defines the 
location of its output pixels as well as the weights needed 
for each output pixel. 

During run time this rectification table is used to quickly 
warp the incoming images to get rid of the lens effects and 
to get the two images pointed in the same direction, as 
described above. 

As illustrated in Figure 2, the rectification module is broken 
into 2 independent channels for the left and right images and 
operates on true RGB 24-bit pixels. 

A single channel consists of a FIFO link to the Camera Link 
Capture module, an SRAM port to read rectification table 
entries for the incoming pixels, a Control State module, a 
multiply-accumulate block to perform the averaging and 
weighting, and an independent SRAM port to write warped 
pixels out.  

The rectified output pixel Pr is computed by from a bilinear 
interpolation of the 2x2 source window. The equation used 
for the interpolation is defined in Equation 1.[5] 

256
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Where the 2x2 raw pixels are Pa (top left), Pb (top right), Pc 
(bottom left) and Pd (bottom right), Wx is the weight along 
the x-axis and Wy is the weight along the y axis. Figure 3 
graphically illustrates Equation 1. The dark dot represents 
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the projected coordinate of the rectified pixel into the raw 
image frame. 
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Figure 3: Rectification example 

Each color channel is independently rectified by its own 
rectification module. A grayscale pixel is derived from the 
rectified RGB values and is appended to the RGB pixel to 
expand the 24 bit input into 32 bit output pixels. 
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Figure 4: Single Channel Rectification Engine block 
diagram 

5. FILTERING ACCELERATION 

The image filtering used in this system is the Bilateral 
Subtraction filter. [2][3] The amount of processing required 
is prohibitive for real-time applications on general purpose 
single CPU computers, and is extremely prohibitive in low 
power, embeddable CPUs for mobility applications.  We 
have implemented this filter as a hardware module in order 
to accelerate processing to real-time speeds for large images 
and to complete another link in the chain for end-to-end 
stereo processing in an FPGA.  

We have implemented a bilateral subtraction filter using a 
9x9 pixel kernel in Verilog for implementation on a Xilinx 
Virtex4 family FPGA. The design has taken advantage of 
the ability to do many of the component computations in 
parallel with wide datapaths and limited off-chip 
communication, and the process is deeply pipelined so that 
the images are processed at the same rate the imager outputs 
image data. There are three parts to the filter, an image pixel 

pipeline with a 9x9 pixel window generator, an array of 
processing elements with a divider, and an image smoother 
and delay.  A general overview is illustrated in Figure 5. 
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Figure 5: Filter Overview 

For the second part of the filter, after the 9x9 window is 
extracted, the pixel data is fed to the processing elements.  
Each processing element is fed the pixel value for its 
position as well as the pixel value for the center pixel.  An 
absolute difference is taken between those two values and 
the result is used as an address into a lookup table.  Each 
processing element has a lookup table unique for its position 
in the window whose contents are the weight coefficients 
for the chosen Gaussian function for that position.  The 
pixel value is then multiplied by the weight and the output 
of the processing element is the pair of the product and the 
weight selected.  The products are fed into an adder tree to 
be added as well as the weights and those two sums are fed 
into a divider and used generate the bilateral smoothed 
image.  The basic processing element is illustrated in Figure 
6. 
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Figure 6: Filter Processing element block diagram 

The third part of the filter is the image smoother and delay.  
The smoothing function is a simple 3x3 center weighted 
average.  It is an average of the center pixel and the average 
of the surrounding 8 pixels.  After the smoothing, the image 
is delayed by the processing time required for the bilateral 
smoothing.  The bilateral filtered image is then subtracted 
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from the 3x3 smoothed image to produce the output of the 
filter as illustrated in Figure 5. 

6. CORRELATION ACCELERATION 

SAD stereo correlation 

The most demanding computations in Stereo come in the 
correlation and disparity search functions.  This step 
involves performing a Sum of Absolute Difference (SAD) 
of a 7x7 window in one image against multiple 7x7 
windows in the other image for each pixel.  For example, for 
a 1024x768 image, and searching 10% of the image width, 
disparity requires 102 7x7 SAD operations per image pixel. 
This presents two tall requirements for a general purpose 
CPU, the first is the large number of arithmetic operations 
required, and the second is the large amounts of data that 
need to be moved in and out of the CPU.  An FPGA can do 
many of the operations in parallel, and the ability to have 
extremely wide data paths limits the number of times the 
FPGA needs to go to off-chip memory to read data or to 
write intermediate results. 

The next step is to find the minimum value of the 102 scores 
in both the Left and Right eye line of sights (LRLOS).  In a 
sequential, non-vector processor, representative of many 
embedded processors, all these steps take a large amount of 
time to complete.[6] 

The hardware is broken up into 3 major parts as illustrated 
in Figure 7.  They are the score generator, a score delaying 
function necessary for LRLOS, and a disparity computer 
and checker.  The overall hardware architecture emphasizes 
parallelism and pipelining in order to complete 
computations quickly.  Each of these modules is fully 
pipelined with a defined latency and an issue rate of one 
data value per clock. Thus, the FPGA can produce one 
disparity output pixel per clock. 
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Figure 7: Disparity Engine Overview 

The SAD Score generator consists of multiple absolute 
difference modules in running in parallel.  For each stereo 
image pixel fed in, the left image pixel is applied against the 
102 previous right image pixels.  This result is fed to 102 
parallel 7 pixel rolling sum calculators, (7RS) which results 
in 102 7 column by 1 row SAD scores representing the 
partial sum of the disparity search space for that pixel.  A 
rolling sum of the previous seven values is used in order to 
cut down on the need to re-compute absolute differences for 

all 7 pixels in the window. This structure is illustrated by 
Figure 8.  
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Figure 8: 7 columns by 1 row SAD calculator 

 
The output of the 7x1 SAD is fed into the 7x7 SAD score 
generator.  The 7x7 SAD score generator operates on a 
similar principle as the 7x1 SAD calculator using a 7 value 
rolling sum. Instead of using shift registers, the 7x7 SAD 
computers use the Xilinx on chip memory primitives to 
store the previous seven lines worth of image data. That 
image data is fed into another 7x1 SAD calculator to re-
compute the value that should be subtracted from the rolling 
sum.  This method trades FPGA logic resources for 
memory, and reduces the amount of on-chip memory 
required over the method of storing the intermediate 
products of the 7x1 SAD score generator.  102 values are 
done in parallel as illustrated in Figure 9. The result of this 
module is a vector of 102 values representing the SAD 
scores for all 102 candidate disparities for one pixel. 
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Figure 9: Seven by Seven SAD score generator  

At this stage, we now have enough data to compute the 
disparity value for the current pixel; however, there are 
certain obstacle edge obscuration artifacts that give either 
degraded or false disparity data. We would also like to have 
a consistency check to determine if the computed disparity 
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is valid. In order validate disparity, a check called the 
“left/right line of sight test” (LRLOS) test is applied.  The 
primary disparity path is to check the left image pixel 
against 102 right image pixels. To perform the LRLOS 
check, the right image pixel is checked against 102 left 
image pixels, and the disparity computed from the right-
image-as-reference is compared against the disparity 
computed from the left-image-as-reference.   In order to 
prevent duplicating resources and computation, it is noted 
that if the results of the left image disparity computation are 
re-arranged, the values of the right image disparity 
computation can be obtained as illustrated in Figure 10.  The 
implementation of the rearranging is a simple delay based 
on the corresponding disparity level.  The left image score 
set is delayed by the latency of the re-arranger to keep left 
data synchronized with right data.  The data is delayed as 
follows.  If L(i) and R(i) are the left and right pixel 
respectively at position i, and D(x) is the SAD score at 
disparity x for pixel L(i), then the score at L(i)D(x) is 
equivalent to R(i-x)D(x). 
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Figure 10: L/R Line of Sight Score Delay 

We now have two vectors representing the left image SAD 
scores and the right image SAD scores.  We can now 
compute integer and sub-pixel disparities.  The left image is 
the primary image, and both integer and sub-pixel disparity 
will be computed from its data set.  The right image is used 
only for the LRLOS check, and therefore only integer 
disparity is required. In addition to the LRLOS check, there 
are additional stereo consistency checks such as a min/max 
check and curve check.   The overall architecture is 
illustrated in Figure 11. 
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Figure 11: Integer/Subpixel Disparity Computer 

Once we have the score vector for the current pixel, the first 
step in computing disparity is to find the minimum value in 
the SAD score array.  The index of the minimum value will 
be the integer portion of the disparity for that pixel.  The 
value of the minimum score of the left image vector, plus 
the score of the next and previous indices will be used to 
compute the fractional portion of disparity.   

Figure 12 illustrates several stages of the pipelined minima 
finder.  Each stage is repeated once per disparity searched. 
Each step checks the current disparity scores against the 
current minimum score.  If the current value is smaller, the 
current disparity’s index, score, and neighbor’s values are 
saved.  The same is done for the right image, however only 
the minimum value and index are saved, and only the 
minimum index value is output.  
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Figure 12: Minima Finder, repeated once per disparity 

After the minimum is found, it is run through the stereo 
consistency checks such as minimum/maximum disparity 
check, minimum curve check, and LRLOS check. A 
maximal or minimal value for disparity is not a valid 
disparity, and the difference between the minimum score 
and its neighbors must be greater than a certain threshold for 
a suitable “curve” to the score vector.  
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The LRLOS check will compare the integer disparity of the 
left and right images, and if they differ by more than 1 
index, it will fail the LRLOS check. It is an addressable 
Shift register.  As disparities from the Right image are fed 
in, the address to read from the FIFO is derived from the 
current Left image disparity.   For example, if the current 
left-as-reference disparity is 10, the right-as-reference pixel 
10 pixels previous should also have a disparity of 10, plus or 
minus 1. 

 If any check fails, a no-disparity flag is inserted in place of 
the current pixel.  After the checks have been performed, the 
data then goes to the sub-pixel computation element.  The 
subpixel computation attempts to fit a quadratic curve to the 
minimum score, and its neighboring pixel’s scores. Since 
the sub-pixel element requires a signed divide, a pipelined 
signed integer divider is used and the integer portion is 
added to the result after being delayed by the latency of the 
divider. The architecture is illustrated in Figure 13. 
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Figure 13: Subpixel Computer 

The output of the subpixel computer is a 16 bit fixed-point 
word.  There are 8 bits for the integer portion of disparity 
and 8 bits for the subpixel portion of disparity.  At this 
point, disparity is complete, and the result is stored in 
memory. 

SAD5 enhancement 

There are certain artifacts in regular stereo correlation that 
blur or give false result at the edges of objects.  To correct 
those effects, a method of combining SAD scores across 
multiple overlapping windows to produce the final SAD 
score for each pixel’s candidate disparity called SAD5 was 
developed.[4]   In SAD5, there are 5 scores generated for 
each candidate disparity.  One score generated for the 
primary 7x7 window centered at the original pixel, and 4 
more scores generated for the 7x7 windows for each pixel 
centered at each corner of the primary window.  The lowest 
two scores of the 4 corner scores are added to the primary 
center score. The resulting score is then passed on to the 
disparity computation engine described in the previous 

section.  To compute SAD5 in the FPGA, it is noted that all 
scores required to compute SAD5 are already computed by 
the 7x7 score generator described previously.  A large shift 
register is placed in between the 7x7 SAD score generator 
and LRLOS score arranger. It is location in the flow is 
illustrated in Figure 14. This shift register is built from 
FPGA on-chip memory outputs the scores from the 5 
overlapping SAD windows, and from those 5 outputs, a 
single output score per disparity is generated.  Figure 15 
illustrates the SAD5 score generator. 

7x7
SAD 
Score

Generator

Score Delay

Integer & 
Subpixel
Disparity 
computer

SAD5 score generator

 

Figure 14: SAD5 score generator location 

6 pixel FIFO 3 line minus 3 pixel FIFO 3 line minus 3 pixel FIFO 6 pixel FIFO

Pipelined
Sort

Delay by sort latency

SAD5n

SADn

Output of sort is two 
“best” scores.

Scores will be added
to disparity score of
current pixel.

 

Figure 15: SAD5 Score generator (repeated once per 
disparity) 

7. RESULTS 

The results of rectification, filtering and correlation have 
been independently compared against software equivalent 
modules and verified for performance and quality.  An 
example data set in Figure 16 shows the input data and the 
outputs for each module.   
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The Laplacian uses roughly 2x the BRAM and 1/5 the 
Slices of the Bilateral, at the cost of reduced quality of 
filtering results. 

The standard build options are as follows: 

FPGA Resource usage BRAM3 Slices4 
Virtex 4LX160 288 67,584
Virtex 5FX130t 576 40,960
Rectification 2 1,186
Bilateral Subtraction Filter 18 19,893
Correlator@1024 wide     
SAD1: 100 28,845
SAD5: 450 35,004
Correlator@512x384     
SAD1: 36 13,275
SAD5: 128 17,502
Example Complete Systems:     
Rect + Bil + SAD1 @ 
1024x768 134 49,924
Rect + Bil + SAD5 @  
512x384 162 38,581

 

Throughput in this system is first limited by the Cameralink 
system, a fixed 30Hz, and then by the memory resources.  
With additional on-board memory the rectification and the 
filter steps could be interleaved so that the filter was running 
on the previous frame while rectification operates on the 
current frame.  This would enable full 30Hz timing.  The 
current system does not have enough room for such 
interleaving, and is thus limited to 15Hz at 1024x768. 

If the Cameralink system was not used as the source of raw 
imagery into the FPGA board, but instead the PCI bus was 
used to load imagery in, the timing becomes more complex. 
In this case the throughput becomes dependent upon the 
image size, the PCI bus speed and the clock rate used on the 
FPGA. Our default design was 1024x768 imagery using a 
32 bit, 66Mhz PCI bus and a 66 Mhz FPGA clock.   

Using a PCI bus to load raw imagery results in an additional 
43ms transfer time, resulting in a total frame period of: 43 
ms (PCI transfer in) + 12ms (Rectification stand alone) + 28 
ms (left rectified image read out over PCI bus and 
simultaneously through the filter) = 83 ms, or 12Hz.  
Disparity can be read out over the PCI bus while 
Rectification runs.  Time can be reduced by: increasing the 
clock rate of the FPGA, improving the throughput of the 
PCI bus (such as by using PCI Express), reducing the image 

 
3
 BRAM is 18Kbit 

4
 Slice count is presented in the Virtex 4 Family’s 4 input LUT reference 

frame, not the Virtex 5 Family’s 6 input LUT reference frame for a 1-1 
comparison  

size, using grayscale instead of RGB imagery, or by using 
additional memory banks so the rectification and filter steps 
can be interleaved. 

The maximum FPGA clock rate is 124MHz, which is 
constrained in this design by the internal performance of the 
SAD5 correlator. 

As a comparison of the FPGA implementation to 
contemporary processors, the same algorithms for SAD1 
implemented in the FPGA were run on a 1024x768 image 
pair on an Intel XEON 5160 at 3GHz, and a Core2 Quad 
Q6600 at 2.4GHz using the Intel’s SSE2 instruction set for 
acceleration.  The timing results for the two systems are as 
follows: 

 XEON 5160 
 @3GHz 

Core2 QUAD 
@ 2.4GHz 

Rectification (2 
images) 

3 ms 6 ms 

Bilateral 
Subtraction Filter 
(2 images) 

6947 ms 8734 ms 

Disparity 74 ms 87 ms 
Total time 7024 ms 8827 ms 
 

8. SUMMARY AND DISCUSSION 

This system is able to compute high resolution dense stereo 
at real-time rates with low latency in a small, low power 
package.  A system capable of processing 1024x768 color 
images was fielded on an Alpha-Data development board 
placed in a small single board computer as a self-contained 
end-to-end stereo processor.   The system can be tailored for 
various image sizes and disparity search ranges at synthesis.  

The design of this system was from the beginning tailored to 
high speed ground mobility applications, and therefore the 
amount of on-chip resources used is commensurate with 
heavily parallel, deeply pipelined computation for maximum 
throughput.  The image passes through each stage only once 
before being passed to the next stage. It is possible to reduce 
the throughput and save resources by making multiple 
processing passes on the image. 

The ability to use the maximum amount of resources 
enables the computation of fast, high quality dense stereo 
disparity, freeing up any host processor for other tasks. 
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